Fuzzy Logic Control for Indoor Navigation of Mobile Robots

Akshay Kumar®, Ashwin Sahasrabudhe® and Sanjuksha Nirgude*

Abstract— Autonomous mobile robots have many applica-
tions in indoor unstructured environment, wherein optimal
movement of the robot is needed. The robot therefore needs
to navigate in unknown and dynamic environments. This
paper presents an implementation of fuzzy logic controller for
navigation of mobile robot in an unknown dynamically cluttered
environment. Fuzzy logic controller is used here as it is capable
of making inferences even under uncertainties. It helps in rule
generation and decision making process in order to reach the
goal position under various situations. Sensor readings from the
robot and the desired direction of motion are inputs to the fuzzy
logic controllers and the acceleration of the respective wheels
are the output of the controller. Hence, the mobile robot avoids
obstacles and reaches the goal position.

Keywords: Fuzzy Logic Controller, Membership Func-
tions, Takagi-Sugeno-Kang FIS, Centroid Defuzzification

I. INTRODUCTION

Autonomous navigation systems have distinct approaches
to trajectory generation, path planning, control and required
computation to execute the tasks for self-driving vehicles
and mobile robotic platforms. Unlike self-driving vehicles,
autonomous mobile robots for indoor as well as outdoor
applications do not have a specific road-like path to maintain
while moving ahead, thereby having the independence to
plan and track any feasible and easy path to the target loca-
tion while avoiding obstacles and satisfying other dynamic
constraints.

Over the years, several control techniques have been
deployed for efficient performance of these mobile robotic
platforms. These techniques range from classical methods
like PID control, trajectory control and position control to
sophisticated methods like Model Predictive Control and
Fuzzy Logic Controller [1], [2]. PID Control technique is
the easiest of all, but suffers from issues of tuning and
robustness; the major deterrent to its use in any real-time high
fidelity demanding problem, like mobile robot platforms.
Other techniques like trajectory and position control work
in environments without disturbances and/or unprecedented
possibilities. However, Receding Horizon-Model Predictive
Control shows promising results but it is mathematically
quite expensive, making the implementation tough.

To accommodate such limitations, we used the Fuzzy
Logic Controller [3], [4] for navigation of a mobile robot
platform of TurtleBot2 in Gazebo simulation environment. A
fuzzy control system runs on fuzzy logic (no hard decisions)
by considering analog inputs as continuous logical variables
ranging between O and 1 instead of strictly O or strictly

*The authors are affiliated with the Department of Robotics Engineering,
Worcester Polytechnic Institute (WPI), MA, USA

1. It essentially means asserting conditions to be “partially
true/false” instead of “true/false”.

A. Literature Survey

Fuzzy Logic controller has been used many times for con-
trol of mobile robots. In [5] both the navigation and obstacle
avoidance approaches are used. The method is applied on
a non-holonomic mobile robot. In the paper [6] the authors
have used fuzzy logic controllers with various types of inputs
like sonar, camera and stored map. An application of fuzzy
logic controller is proposed for indoor navigation in the paper
[7]. In this paper wheeled mobile robots(WMR) are used.
Another application of the fuzzy logic controller for indoor
navigation is presented in the paper [8].In this paper visual
sensors are used to guide the robot to the target, but they do
not use FLC for obstacle avoidance.

II. FUZZY LOGIC

The section is divided into two subsections - subsection
A discusses the general approach to fuzzy control while
subsection B explains the exact techniques for inference and
processing used to implement the proposed controller.

A. Fuzzy Control Approach

Fuzzy logic theory is a solution to control mobile robots.
The basic structure of a fuzzy logic controller is composed
of three steps. The first step is fuzzification which trans-
forms real values inputs and outputs into grade membership
functions for fuzzy control terms. An example membership
function generation setup is shown in Figure [T} The second
step is the inference which combines the facts acquired from
the fuzzification step and conducts a reasoning process. The
basic fuzzy rules depend on the information acquired which
is then reasoned using the ’If-antecedents-then-conclusion’
rule. The last step is the defuzzification which transforms the
subsets of the outputs which are calculated by the inference
step.

We use a combination of two fuzzy logic controllers to
complete our task. For navigation a Tracking Fuzzy Logic
Controller (TFLC) would be used and an Obstacle Avoiding
Fuzzy Logic Controller(OAFLC) would be used for avoiding
unknown obstacles in the cluttered environment. The lack
of information of the environment makes it a challenging
problem to navigate. The TFLC and OAFLC are combined
to navigate the robot to the target along a collision free path.
The algorithm starts with TFLC and whenever there is an
obstacle in the path, it switches to OAFLC. The output of
this algorithm are velocities of left and right wheels.

Hep
ZE S M B VB
EP (m)
0
0.1 0.3 0.6 0.9 1.2

Fig. 1: Example Membership Function Representation

TFLC helps to move the robot to the target smoothly by
taking the distance and the angle between the robot and the
target as its inputs. OAFLC is used to generate a control
signal in order to avoid obstacles. The inputs to the OAFLC
are the distances from the obstacles at certain angles from
the robot. These distances are acquired from the depth sensor
of Kinect Sensor on TurtleBot. The velocities of the left and
right wheels are calculated using the defuzzification step.

B. Fuzzy Techniques

Here, we discuss the techniques used for the two impor-
tant implementations of the Fuzzy Logic Controller - the
Fuzzy Inference system and the defuzzification technique.
The Takagi-Sugeno-Kang fuzzy inference technique and the
Centroid defuzzification methods are used to implement
our proposed controller. The TSK approach computes the
output of the If-Else rules as a linear expression made up
of weighted conditional components. Elaborately, the FIS
setup processes all If-Else conditional statements with the
weights generated on the basis of the membership functions
and computes a new weight for execution of the condition.
Further, the Centroid defuzzification process computes a
normalized weight distribution for conditions and thereafter
their weighted sum to generate final numerical output val-
ues. These techniques have similar implementation for the
Tracking FLC as well as the Obstacle Avoidance FLC.

II1. METHODOLOGY

In order to implement Fuzzy Logic Controller on a mo-
bile robot platform, the TurtleBot2 robot platform is being
used. Gazebo simulator with ROS support is being used for
simulation, testing and environment creation platform. This
methodology section has been further divided into subsec-
tions that explain the hardware setup, the software design,
environment setup, fuzzification of sensor data, controller im-
plementation methodology and final implementation nuances
of the proposed system.

A. TurtleBot2 Hardware

Figure [2| shows the CAD specifications of the TurtleBot2
mechanical model and design.

The TurtleBot2 is an extended work placed atop a standard
differential drive mobile base from Kobuki. It has several
sensors like the bump sensor and cliff sensors on the base.

Fig. 2: Specifications of TurtleBot2

The IMU sensor on the base observes the angular heading
and senses the variations over motion. Table 1 mentions the
several hardware specifications of the Kobuki base being
used.

TABLE I: Hardware Specifications of the Kobuki Base

Max. Linear Velocity 70 cm/s

Max. Rotational Velocity 180 6/s (110 6/s gyro performs poorly)

Payload 5 kg (hard floor), 4 kg (carpet)

Threshold Climbing Climbs thresholds of 12 mm or lower

Rug Climbing Climbs rugs of 12 mm or lower

Expected Operating Time | 3/7 hours (small/large battery)

Expected Charging Time 1.5/2.6 hours (small/large battery)

The TurtleBot2 version used here has a Asus Xion Pro
Live mounted for perception. We use the depth sensing and
consequent conversion of the same into a 2D laser scan to
learn about the presence of obstacles for navigation. It has
58.5% and 48.0° horizontal and vertical angular ranges of
view respectively. Its linear range of view is 80cm to 4m in
far mode and 40cm to 3m in near mode. Given the large area
of observation, we are able to create several levels of fuzzy
logic for control.

B. TurtleBot2 Software

Since the robot supports ROS(Robot Operating System) to
communicate and execute instructions, the primary mode of
information exchange is the Subscriber/Publisher technique
where the controller node reads subscribes to topics which
have information about the surroundings and publishes data
for other nodes as per requirement. The Twist message
from ’geometry_msgs’ message type publishes messages to
’/cmd_vel_mux/input/navi’ topic to control the movement of
the robot’s Kobuki base.

Table 2 shows the messages used to maneuver the robot
around.

TABLE II: Communication Messages

Control Topic Message
Linear Velocity X /emd _vel _mux/input /navi | linear.x
Linear Velocity Y Jemd vel _mux/input [navi | linear.y
Angular Velocity Z | /cmd vel_mux/input /navi | angular.x
The controller node subscribes to several topics,
namely, ’camera/depth/image raw’, ’/scan’ and ’/cam-

era/depth/points’ providing the continuous depth cloud data
points, horizontal laser scan data(array with distances of
obstacle in the range of view) and complete point cloud

visualization information respectively. It also fetches knowl-
edge about the robot’s current position in the world and its
previous motion from related topics like ’joint_states’ and
*gazebo/link _states’.

Figure [3] shows the information obtained from Depth
Cloud and Laser Scan data obtained from the sensor.

Fig. 3: Data from Depth Cloud and LaserScan

The ’/joint_states’ topic provides total distance traveled by
each of the wheels(based on the revolutions) and the veloc-
ities of each individual wheel. The fuzzy logic controller
is essentially supposed to determine the Cartesian velocities
for the robot and feed the corresponding angular velocities
to the wheels. However, since the robot already supports
taking commands in Cartesian coordinates, the controller
does not need to make those conversions. Finally, the position
and orientation is published to the ’/gazebo/link states’ topic
which has messages like Twist, Pose and reference frame
information.

C. Environmental Setup

In order to test our controller performance we defined a
customized environment in the Gazebo simulator as shown
in Figure [The environment consists of objects of different
shapes and sizes in order to increase the complexity of the
data input from the Xion sensor. The objects are placed
randomly. We can spawn our robot at any point in the
environment and provide it with different goal positions to
check the robustness of our controller.

Fig. 4: Customized Environment in Gazebo

D. Fuzzification of Kinect/Xion data

Figure [5| shows the fuzzification process for data coming
from the Kinect/Xion sensor available on the TurtleBot2.
Data is discretized based on the angular subsections of the
depth image scan at every 3°. Thus, the total depth image is
discretized in 20 subsections. Further, the depth values are
discretized in subsections of around 0.5m . The depth data
is thus divided in 5 sections ranging from 0.4m to 3m.
This discretized data is used to decide on the linear velocity
values for left and right wheels which correspond to linear
and angular velocity for the TurtleBot2 in our case.

Fig. 5: Fuzzification of Point Cloud data

E. Implementation of the Fuzzy Logic

As shown in Figure[f] the implementation of our controller
involves simultaneously running Tracking FLC and Obstacle
Avoidance FLC. Each of them contribute towards the final
decision on the linear velocities and the current direction of
heading.

While the TFLC tries to adjust the robot’s heading in the
direction of the target and set a linear speed that makes
the robot move towards the goal, the OAFLC runs If-Else
inference conditions on the obstacles encountered, depending
upon their distance and angular position in robot’s field of
view. The OAFLC adjusts the heading and the linear speed
together to just be able to dodge the obstacle with minimal
effect in the previous speed/heading. This iterative process
terminates after the robot reaches the target position.

The final control signals could be obtained from the
mathematical equation as:

(%, @) = x* (X, @) rrrc + (1 —x) * (X, @;) oaFLC

where, ¥ and @, represent the linear velocity in X
direction and the angular velocity about the Z axis, for
the robot. The equation provides the final commands
to be sent to the robot which is a weighted sum of the
same generated independently by the TFLC and the OAFLC.

1) Obstacle Avoidance FLC: The Obstacle avoidance
Fuzzy Logic Controller works based on the sensor data for
distance from obstacles. In case of TurtleBot 2, we use the
Depth camera of Kinect to extract depth values at certain
angles. The incoming depth values are also discretized as
shown in Figure [5] with several depths and angle discretiza-
tions forming an angular grid.

The discretization in depth can also be changed based on
the application and complexity of problem. This however
changes the number of If-Else rules that are created based
on the conditions imposed on each depth reading.

The proposed implementation here divides the angular
range in 3 sections of 20 degrees (as the Kinect sensor
has a range of 60°) each and depth is also discretized into
3 sections named as Very Near, Near, Far. Final inference
rules change based on the combination of the three depth
values and sections in which each of them falls. The If-
Else conditions thus obtained are shown in Figure [7] where
columns A, B and C are represent the distance between the
robot and the obstacle in those angular sections.

2) Tracking FLC: Given that the TFLC takes the distance
between the robot and target and the angular deviation
between the robot’s current heading and the line joining the
robot to the target, the TFLC does not need any extra sensing
setup. Proprioception from odometry data gives the current
angular heading of the robot and the distance between the
robot and target.

Angular heading deviation was fuzzified into 5 sections
named Negative Right (—90°), Negative Thirty (—30°),
Aligned (0°), Positive Thirty (30°) and Positive Right (90?)
while the distance was fuzzified into simpler Zero, Near and
Far sections. The resultant If-Else rules generated are shown
in Figure [§]

The final behavior fusion from the two FLCs is shown in
Figure 9] which shows final weighted sum of the same as the
final commands sent to the robot for its motion.

Tracking Fuzzy Logic Controller 1

Distance to
goal

Y

Set linear
speed

E I

Set heading
Y

Calculate Linear and
Angular Velocity

NO

Obstacle
Detected

YES

Obstacle Avoidance
Fuzzy Logic Controller

Distance to
obstacle

v

Discretize Point
Cloud data from
Kinect

v

Extract location
of obstacle

Y

Calculate Linear and
Angular Velocity

Calculate final Linear
and Angular Velocity

v

MOVE

Fig. 6: FLC Implementation Flow Chart

IV. EXPERIMENTAL RESULTS

The proposed FLC methodology delivered satisfactory
results during implementation in the simulation environment.
Figure[I0]shows variations in linear velocities while the robot
tries to traverse from a far off start point to reach the target.

As evident in the results, over time, the TFLC predicts
highest linear velocity when the robot is far off and then
gradually decreases as it nears the target. The peaks in
OAFLC predicted linear velocity distribution suggests that it
encountered obstacles at those time-steps and thus predicted
a changed linear velocity at a changed angular orientation to

A B c Linear Velocity Angular Velocity
Very Near Very Near Very Near Zero Positive High
Very Near Very Near Very Low Negative Low
Very Near Very Near Far Very Low Negative Low
Very Near Very Near Low Zero
Very Near Low Negative Low
Very Near Far High Negative High
Very Near Far Very Near High Zero
Very Near Far High Zero
Very Near Far Far High Negative Low
Very Near Very Near Very Low Positive Low
Very Near Very Low Positive Low
Very Near Far Very Low Negative Low
Very Near Low Positive Low
Low Zero
Far Low Negative Low
Far Very Near High Zero
Far High Zero
Far Far High Zero
Far Very Near Very Near Very Low Positive Low
Far Very Near Very Low Positive Low
Far Very Near Far Very Low Positive Low
Far Very Near Low Positive High
Far Low Positive Low
Far Far Low Positive Low
Far Far Very Near High Positive Low
Far Far High Positive Low
Far Far Far High Zero
Fig. 7: Rules for OAFLC
Ori i Distance Linear Velocity Angular Velocity
Zero Zero Negative High
Negative Right (nr) Low Negative High
Far High Negative High
Zero Zero Negative Low
Negative 30 (nt) Low Negative Low
Far High Negative Low
Zero Zero Zero
Zero degree(a) Low Zero
Far High Zero
Zero Zero Positive Low
Positive 30 (rt) Low Positive Low
Far High Positive Low
Zero Zero Positive High
Positive Right(r) Low Positive High
Far High Positive High

Fig. 8: Rules for TFLC

Linear X Velocity
LinX_OAFLC
AngZ_OAFLC

Angul

Jar Z Velociy

Linear
Velocity X

Linear X Velocity
UnX_TFLC
Angular Z Velocity
AngZ_OAFLC

Angular
Velocity Z
Estmated Distance / N

(frackingGo seeking)
| AC)

e =
~ A~
=z

Fig. 9: Behavior Fusion and Flow of Control

dodge the obstacle.

The devised controller was tested for varying complexity
in simulation environment as well as different start and target
positions. TurtleBot2 was able to reach those locations within
very acceptable time period. The controller performance was
satisfactory for all the testing situations. Two of the results
have been recorded and the video showing the same can be
found here at https://www.youtube.com/watch?
v=GUEN40Orpb2Al and https://www.youtube.com/
watch?v=4fj4g-swgOU

Since the proposed technique does not make the robot
track any pre-defined trajectory or constraints, the results do

TFLC Linear Velocity

W0 50

30 E
OAFLC Linear Velocity +1.5246239300

30 60
I Position Error +1.52462393¢0

6
41524623039

Fig. 10: Predicted Linear Velocities by the TFLC and
OAFLC and convergence of position error over time

not have any comparative graphical content but rather the
above videos show complete implementations.

V. FUTURE WORK

We propose using techniques like Genetic algorithm and
Particle-Swarm optimization to improve the performance of
our system. Genetic algorithm is an evolutionary algorithm
that uses biological operators like mutation, crossovers,
elitism and culling. The algorithm tunes the fuzzy control
rules and tries to make the system resemble an ideal control
system. The tuning method fits the fuzzy rules’ membership
functions with the FIS (Fuzzy Inference System) and the
defuzzification process. In the end, the method extracts best
membership functions for the process. Particle-Swarm opti-
mization technique is another similar iterative evolutionary
algorithm that improves a candidate solution by making it
”fly” through the problem space following the current best
solution.

VI. CONCLUSION

We were able to get satisfactory performance for robot
navigation in unknown environments with no prior knowl-
edge about obstacles. The proposed FLC implementation
using native localization from the simulation environment
which could be eliminated easily. We also faced the follow-
ing problems in the project.

A. Problems Faced

As we are using the Kinect sensor on the TurtleBot2 we
are facing the following range limitations:

1) The Xion gives an angular range of 58.5 degrees
divided with a central axis. Therefore it limits the
visibility range and cannot detect obstacles out of
that angular range. Therefore, unlike the LIDAR on
TurtleBot3, TurtleBot2 lacks a 360 degree view and
the controller shall have limited sensing which might
affect the performance we fear.

2) We get the depth image from the Xion which gives
data from range 40cm to 3 meters in the near mode.
Hence, any obstacle between this range can be de-
tected. But this creates a limitation for detection of

https://www.youtube.com/watch?v=GUEN4Orpb2A
https://www.youtube.com/watch?v=GUEN4Orpb2A
https://www.youtube.com/watch?v=4fj4q-swg0U
https://www.youtube.com/watch?v=4fj4q-swg0U

[1]

[2]

[3]

[4]

[6]

[7]

obstacles nearby the robot, at a distance less than
40cm which becomes a blind spot and makes the
controller limited performance on sudden appearance
of obstacles, difficult.

REFERENCES

Hajer Omrane, Mohamed Slim Masmoudi, and Mohamed Masmoudi,
Fuzzy Logic Based Control for Autonomous Mobile Robot Naviga-
tion, Computational Intelligence and Neuroscience, vol. 2016, Article
ID 9548482, 10 pages, 2016. doi:10.1155/2016/9548482

S. M. Raguraman, D. Tamilselvi and N. Shivakumar, "Mobile robot
navigation using Fuzzy logic controller,” 2009 International Confer-
ence on Control, Automation, Communication and Energy Conserva-
tion, Perundurai, Tamilnadu, 2009, pp. 1-5.

Mohammed Faisal, Ramdane Hedjar, Mansour Al Sulaiman, Khalid
Al-Mutib,"Fuzzy Logic Navigation and Obstacle Avoidance by a
Mobile Robot in an Unknown Dynamic Environment,” International
Journal of Advanced Robotic Systems. doi: 10.5772/54427

J. Johnson and Jesu Godwin D, “Indoor navigation of mobile robot
using fuzzy logic controller,” 2015 3rd International Conference on
Signal Processing, Communication and Networking (ICSCN), Chen-
nai, 2015, pp. 1-7.

F. Abdessemed, K. Benmahamed and E. Monacelli (2004), A fuzzy-
based reactive controller for a nonholonomic mobile robot, Robotics
and autonomous Systems.

M. Cao and E. L. Hall, Fuzzy logic control for an automated guided
vehicle, Intelligent Robots and Computer Vision XVII: Algorithms,
Techniques and Active Vision,

R. Rashid, I. Elamvazuthi, M. Begam and M. Arrofiq, Differen-
tial Drive Wheeled Mobile Robot (WMR) Control Using Fuzzy
Logic Techniques, AMS 10 Proceedings of the 2010 Fourth Asia
International Conference on Mathematical/Analytical Modelling and
Computer Simulation 2010.

V. Raudonis, R. Maskeliunas (2011) Trajectory based fuzzy controller
for indoor navigation, Computational Intelligence and Informatics
(CINTI).

	INTRODUCTION
	Literature Survey

	FUZZY LOGIC
	Fuzzy Control Approach
	Fuzzy Techniques

	METHODOLOGY
	TurtleBot2 Hardware
	TurtleBot2 Software
	Environmental Setup
	Fuzzification of Kinect/Xion data
	Implementation of the Fuzzy Logic
	Obstacle Avoidance FLC
	Tracking FLC

	Experimental Results
	Future Work
	Conclusion
	 Problems Faced

	References

