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Introduction 
Modern day manufacturing companies are working towards a fully autonomous process with minimal 

human interaction. A large percentage of robots in these industries are robot manipulators for high volume 

products. Though full automation of some robots has been reached, programming the robots to perform these tasks 

require skilled engineers to interpret and codify its actions. Employing these engineers is expensive, and restrictive 

as you can only afford to hire a few engineers.  

Programming by Demonstration is an approach that helps the user program the robot by physically showing                

the robot what and how the perform a task. The user does this by physically moving the robot through the desired                     

trajectory. Apart from being extremely intuitive, one major advantage of this technique is that the nature of                 

trajectory/curvature can be approximated by a dynamic environment without having to explicitly program the              

robot for every changing start and end position. You can effectively break down the movements into Dynamic                 

Movement Primitives, allowing combinations of primitives for different movements later.  

 

Background 

For this project we focused on a teaching technique called Programming by Demonstration. In essence, this                

means to teach a robot what to do by showing it the movement, not coding the path. This is a popular method of                       

programming for robots aimed at beginners or for non-technical use. The operator guides the robot through the                 

motions and actions desired, and the robot records the motions and plays them back later. There are two main ways                    

to teach the robot the motions desired. You can manipulate the robot via the attached Teach Pendant or similar                   



control. Alternatively you can physically move the robot through various positions and record the joint/end               

effector states continually or at waypoints. 

 

  

 

Once you have your paths, you can either play that path back directly, or else break that path down into a                     

series of Dynamic Movement Primitives (DMP). DMPs are a series of very basic movements, such as ‘move up’,                  

‘move down’, ‘rotate’, etc. The idea is to create a large amount of these blocks of motions, so you can chain them                      

together in different combinations later. This allows you to avoid having to create an entire new path for every new                    

action. This can be especially tedious if the robot’s actions need to have slight variations for different parts or                   

actions. Rather than re-record the entire motion for each variation, you can keep the bulk of the movement the                   

same, and simply change the DMPs for that specific variation.  

The AI technique we decided to use is Imitation Learning. This is a form of Reinforcement Learning, also                  

called Learning by Demonstration. This fits almost perfectly with our plan of utilizing Programming by               

Demonstration for our robot. Imitation Learning seeks to fix an issue with starting a new reinforcement learning                 

session. Reinforcement learning relies on a Q Table, a table that maps certain actions to their rewards. At the                   

beginning, the Q table is empty; the program has no idea what actions return what rewards. While you can let the                     

algorithm iterate until it learns, this takes time, and in certain circumstances can be dangerous. Imitation learning                 

aims to solve this issue by providing information from the start. For example, if you wished to use AI to teach a car                       

how to avoid accidents while driving, you would save a large amount of time by providing the program with all the                     

rules of the road. This way you can spend more time learning how to deal with people changing lanes without a                     

turn signal, and skip trying to figure out what that red octagon means.  



Setup 

We first needed to choose a robot to use with our project. As one of our group members was already                    

working with a robot for another class’ project, we decided to use that one to skip the time needed to learn how to                       

operate it. The robot used was a Kuka YouBot. This is a 5 Degree of Freedom (DOF) robot, using a 3DOF planar                      

arm on a rotating base, with a rotating wrist joint. As our project involves following a trajectory, we can ignore the                     

wrist joint, as we don’t care about the orientation of the end effector, just the position. The robot arm is attached to                      

a wheeled, mobile base. As we only care about the arm trajectory, we treat the robot as static and do not move it                       

around. There is a physical robot in the CIBR lab, at 85 Prescott. 

In an attempt to speed development, and so as to not be constrained to the physical robot, we opted to do                     

our development and testing in simulation. As the focus of this project is the AI behind the movement, not the                    

actual use of the robot, this does not affect our project negatively at all. The initial plan was to utilize the Robotic                      

Operating System (ROS) and its simulator, Gazebo. We quickly learned that Kuka stopped supporting ROS a few                 

years ago, and unless we opted to use an older version of ROS, we would have to find another solution. Luckily,                     

they support another simulator called the Virtual Robot Experimentation Platform (VREP). VREP includes a              

plethora of helpful features, we utilized its realistic physics simulator, forward and inverse kinematics, and a                

Python remote API. The API is especially helpful as it allows us to continue to work in Python, as we have with all                       

of our previous assignments. In addition, we interfaced a PS2 controller with VREP to control the robot for the                   

demonstration part of the project.  

 

Implementation 

The AI technique implemented for the projected wasn’t built upon an already existing code or project. We 

wrote the code from scratch. The V-REP setup was also figured and done from scratch.  

The Kuka YouBot module in V-REP has its 5-DOF robotic arm controlled as linkages with set constraints.                 

These linkages are controlled to move towards a desired end-effector cartesian coordinate with the help of a                 

spherical virtual object existing near the middle of the arm’s gripper. Controlling this sphere controls the position                 



and orientation of the end-effector of the robotic arm. In order to solve the IK of the robot, we can trivialize it to                       

the solving of IK for a single sphere in mobile-frame with respect to the robot’s base. 

The Kuka YouBot is a model in V-rep which uses its own internal child-script, written in Lua programming                  

language. To collect the data while “demonstrating” the robot using the PS2 controller, we needed a working                 

forward and inverse kinematic implementation. Here are two approaches we took: 

First, we modified the internal API by modifying the child script to allow it to interface with external ROS                   

commands. Using those ROS commands, we then move the end effector in coordinate space, and record the joint                  

angles for later analysis. In this step we made use of the inverse kinematics of the robot.  

Unfortunately, when we wish to play back the motions, we require use of the external API, not the internal.                   

When using the external API, we have to disable our Lua script from before. This disables some of the internal IK                     

functionalities, and the IK-joint mode settings disappear. This is where second becomes useful. 

In this approach we use an external API to implement the forward kinematics. This means that we control                  

the robot via an independent Python script providing joint angle data. This data is logged and the manipulator is                   

later trained on the data. While the external API has several advantages, including not having to modify the child                   

script to control the robot, it does have certain disadvantages. We initially attempted to bypass these by using the                   

first approach. The reasoning can be understood by observing how the IK functions internally in V-REP. 

Through some trial-and-error, and with the help of the ext_ROS_interface package for VREP, we manage               

to establish connection of -REP’s model with ROS. In other words, we can utilize messages over a ROS node to                    

control the robot while making minor changes in the internal API. This enables the use of full internal                  

functionalities as well as retaining control of the robot to external published messages. The use of this ROS                  

interface also enabled us to easily use an external ps3-controller to control the end-effector position of the robot                  

and generate desired trajectories for training.  

 

Base Technique: 

A standard comparison with the AI technique is a simple method. We first gather several demonstrations                

worth of data. Naturally, these are prone to errors in movement. In order to alleviate these, we average out the data                     

to create an ideal series of joint angles. This is a fixed trajectory that represents the user's intent for the particular                     

task, but does not support any kind of scaling or variations. It is non-adaptive and merely represents a new                   

trajectory that is the best among several error-prone trajectories. The results for this non-AI technique are detailed                 



in the results section of the paper. However, it is quickly noticeable that there is a constant offset between the ideal                     

trajectory and the averaged trajectory. The video in appendix A labelled ‘Non AI Baseline’ shows the results of                  

implementation of this new trajectory on the robot in simulation environment. 

 

Artificial Intelligence: 

We used Dynamic Movement Primitives as the AI technique for learning by demonstration. ​Dynamic              

movement primitives (DMPs) are a method of trajectory control/ planning. Imagine that you have two systems: An                 

imaginary system where you plan trajectories, and a real system where you carry them out. When you use a DMP,                    

what you’re doing is planning a trajectory for your real system to follow. A DMP has its own set of dynamics, and                      

by setting up your DMP properly you can get the control signal for your actual system to follow. If our DMP                     

system is planning a path for the hand to follow, then what gets sent to the real system is the set of forces that need                         

to be applied to the hand. It’s up to the real system to take these hand forces and apply them, by converting them                       

down to joint torques or muscle activations. IT could use something like the operation space control framework or                  

similar control system. 

Dynamic motion primitives (DMPs) are a method for trajectory control used in robotic applications. This               

technique utilizes a number of gaussians at various time-steps called “basis functions” and trains them on an input                  

trajectory by factoring them as “basic movement primitives”. The basis functions then, “learn” the weights of the                 

system, modifying themselves to the input trajectory in order to convert a simple linear point-attractor system to a                  

non-linear function by append these basis functions. 

This enables us to train a system to recreate a motion with similar trajectory as the input system, while                   

enabling us to change the end-effector position at will by changing the final DMPs invoked. We can then enable                   

temporal and spatial scaling of the motion as per our desired trajectory, without needing multiple demonstrations                

of the motion. This learning technique is efficient and enables us to learn a desired motion in one-shot by breaking                    

it into its motion primitives and training an algorithm on them. 

The following flowcharts will give an good overview of the entire implementation detail of the Dynamic                

Movement Primitive.  

 



 

 

The implementation of Dynamic Movement Primitives involves processing the obtained data that carries             

varying joint angular positions for all the individual joints of the manipulator over the complete demonstrated path.                 

It begins with parsing several data points (each data point is a vector containing the angular position of the joints)                    

to segregate each joint independently. After, the DMP training module runs over each of individual joint data and                  

computes weights for the basis Gaussian functions and stores in a sample XML file. Further, depending upon the                  

user-defined variations in the testing conditions, the DMP runner uses the weights to fit a new trajectory that has                   

curvature/nature of motion similar to the demonstrated motion. Changing the terminal states for the joint angles or                 

scaling the motion over a larger/shorter time period are a few user induced variations among others that would be                   

handled by the AI technique. 

The following flow chart explains what is going on behind the scenes in the Dynamic Movement Primitive                 

algorithm: 

 



 

 

The figure shows a snippet of the DMP weights, variances and Gaussian means generated for the various 

Gaussian functions during training and shall be used to generate appropriate trajectories. 

 

 

Results and Discussion 

Here we present the results of the implemented AI and check for the robustness of the system with different                   

initial setting or scaling. Videos for demonstrating each of the cases are attached as a zip file, or viewable through                    

the links in Appendix A. 

 



The first case is for non scaling, where the robot attempts to replicate the initial pattern exactly. The plots                   

below show the error over time between the joint set point and actual angle. The plot in red is the expected                     

trajectory that is the one logged while teaching the robot. The plot in blue is what the robot follows after having                     

learned for the generated data. 

 

 

The second case involves changing the end goal. An offset in the values of the joint angles is added to the                     

learned system. The graph shows that even after the step input, the robot is able to adjust its position to match the                      

new goal, even after an offset is given the general trajectory is followed by the learned system.  

 



 

 

The final case involves changing the goal, as well as changing the scale. The graphs below show the system                   

performance over time as before. We chose these variations to show that we can have the robot perform a certain                    

trajectory in the required time, without having to explicitly define a new trajectory each time. The robot learns                  

from it’s given trajectory, and our implementation allows for it to adapt to different situations.  



 

 

Future Goals 

The first is to make DMP look at slightly more abstract data. As it is now, it’s limited to only joint states.                      

By opening it up to Cartesian states, we can add in additional control. Also, adding in some finer control of the                     

joint limits and workspace zone. Next is to add in the ability for the You-Bot to drive while we move the arm. This                       

will allow us to use DMPs with the mobile base, further expanding our capabilities. Adding in some more                  

advances primitive calculations would allow us to have the robot work in conjunction with humans, learning from                 

their inputs in a cooperative role, rather than a defining role. Finally, the implementation of obstacle avoidance is                  

crucial for the overall use of the robot, and allow us further avenues to apply AI.  

 

Conclusion 

In the end, our robot was able to utilize Dynamic Movement Principles on order to replicate given and 

edited trajectories. We were able to use AI techniques to derive the building blocks of motions in order to later 



recombine to suit our test. We were able to successfully implement a programing by demonstration platform for 

our chosen robot. 

Appendix A - Videos 

Non-AI: 

Non-AI Baseline 

AI Cases: 

Square In Other Plane 

Square Slow Temporal Scaling 

Square In Different Plane Temporal Scaling 

https://drive.google.com/open?id=1W4F97CCbXqj5DVqLeLQBMh30I88qqfQv
https://drive.google.com/open?id=1so4dcUgDu57Xm1fAQfF_Yztdcs1uzPek
https://drive.google.com/open?id=13LUqMTT464DdCZCP79OjCKPSQY8v6irX
https://drive.google.com/open?id=1hRm1DaiJxoqILsDJCnMdeZlFm13bkWP1

